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Abstract 

The rate of sponification of ethylacetate by sodium hydroxide was measured near the 

consolute point of the liquid mixture, 2-butoxyethanol + water.  At temperatures far 

below the lower critical solution temperature, Tc, the apparent rate constant obeyed the 

Arrhenius equation.  In the one-phase region just beneath Tc, the rate constant decreased 

below the Arrhenius background, indicating critical slowing down.  Because the kinetics 

of this reaction are second order, the net reaction rate depends upon both, ( )e
G /∂∆ ∂ξ  

and ( )2 2

e
G /∂ ∆ ∂ξ , where G∆  is the Gibbs free energy difference between products and 

reactants, ξ  is the extent of reaction, and subscript “e” refers to chemical equilibrium.  

On the basis of the  Principle of Universality, we argue that both of these thermodynamic 

derivatives should go to zero at the critical point, and the net reaction rate should slow 

down as is actually observed as the temperature approaches Tc. 
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I.  INTRODUCTION 

The consolute point is an extremum in the temperature vs. mole fraction phase 

diagram of a constant pressure binary liquid mixture where the homogeneous solution 

first begins to separate into two immiscible layers.  The extreme value of the temperature 

along the boundary separating the two immiscible liquids is called the critical solution 

temperature, o
cT .  A binary mixture having a liquid-liquid phase boundary that is concave 

down is said to have an upper critical solution temperature (UCST), while a mixture 

having a liquid-liquid phase boundary that is concave up is said to have a lower critical 

solution temperature (LCST) [1,2].  Upon introduction of a reactant or a catalyst, a 

chemical reaction can often be initiated.  This permits liquid mixtures to be used to study 

the effect of a critical point on the net rate of reaction. 

 Using conductivity as a measure of the extent of reaction, we have observed 

slowing down in the net rates of hydrolysis of five different organic halides near the 

equilibrium consolute points of three water-based binary liquid mixtures [1,2].    These 

five reactions have the common feature that they all proceed by the SN1 mechanism with 

rate laws that are first order in the concentration of the organic halide.   To explore these 

effects in more detail, we have carefully measured the SN1 hydrolysis rate of 2-chloro-2-

methylbutane in the critical region of isobutyric acid + water (UCST) using strong 

stirring in order to keep any coexisting phases well mixed [3].  To distinguish the effect 

of an upper critical solution temperature from that of a lower, we also carefully measured 

the rate of hydrolysis of 2-bromo-2-methylpropane in triethylamine + water (LCST) [4].  

In both cases, we observed slowing down above the critical temperature and speeding up 

below it.  Because two phases coexist below an UCST but coexist above an LCST, these 
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experiments combine to demonstrate that critical reaction rate effects are intimately 

associated with the critical point and are not an artifact of the coexistence of immiscible 

liquid phases [3,4].   

 The results of these hydrolysis reaction experiments have led us to pose the 

following question: Do reaction rate critical effects depend upon the reaction 

mechanism?  To be more specific, can reaction rate critical effects be observed when the 

mechanism is other than NS 1 , and the kinetics are no longer first order?  To answer this 

question, we have measured the rate of the saponification of ethylacetate by NaOH in 2-

butoxyethanol + water (LCST).  In contrast to the SN1 hydrolysis reactions, where the 

rate controlling step is unimolecular, the rate-controlling step in the saponification of 

ethyl acetate is the bimolecular encounter of OH−  with 3 2 5CH COOC H  to form the 

hemiorthocarboxylate ion intermediate, ( )( )3 2 5CH C H O OH CO -, which then 

subsequently decays into the products [5].   

II. THEORY 

2.1 Kinetics 

We can define the extent of reaction, ξ , by considering a reversible elementary 

reaction written in the form 

( ) ( ) ( ) ( )1 2 3 41 2 3 4ν + ν → ν + ν  (1) 

In Eq.(1), the reactants (1) and (2) are converted into products (3) and (4).  The respective 

stoichiometric coefficients are 1 2 3, , ,ν ν ν and 4ν .  If we let ( )ic 0  be the initial 

concentration of species,( )i , then the concentration, ic (t), at a later time, t, is, 

( )i i ic c 0= ± ν ξ , where the upper sign applies to products while the lower sign applies to 
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reactants.  The initial value of ξ  is zero, while its equilibrium value at the end of the 

reaction is eξ .  The net rate of reaction is the time derivative, d ξ /dt.  

In the saponification of ethylacetate, the stoichiometry of the overall reaction is 

 3 2 5 3 2 5CH COOC H NaOH CH COONa C H OH+ → +  (2) 

Since both sodium hydroxide and sodium acetate are strong electrolytes, the 

measurement of electrical conductance can be used to follow the progress of the reaction.   

Because the hydroxide ion has a higher conductivity than the acetate ion, there is a net 

decrease in conductance as the reaction progresses. 

If the initial concentrations of OH- and CH3COOC2H5 are the same and equal to 

co, the rate law governing the reaction in Eq. (2) is 

 ( )2 2
o

d
k c k

dt

ξ ′ ′′= − ξ − ξ  (3) 

where the  rate constant in the forward direction is k′ .  Even though this saponification 

reaction is essentially irreversible [5], we have included the rate of the reverse reaction, 

2k′′ξ , albeit slight, in the overall rate law in order to make contact between the kinetics 

and the thermodynamics.  On the basis of what is known about the mechanism [5], we 

have taken the kinetics of the reverse reaction to be second order with rate constant, k′′ .  

 For comparison with thermodynamics, it will prove useful to express the right 

hand side of Eq.(3) in terms of the position of equilibrium, eξ , instead of the initial 

concentration, co ,  as shown.  Since at equilibrium, d / dtξ  = 0, the value of eξ  can be 

computed by first setting the right hand side of Eq. (3) to zero and then solving the 

resulting quadratic equation.  The appropriate root is given by 
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( )( )
( )( )

1/ 2

o

e

c 1 k / k

1 k / k

′′ ′−
ξ =

′′ ′−
 (4) 

The right hand side of Eq.(3) is the function, ( ) ( ) 2
of k c k′ ′′ξ = − ξ − ξ , which we can 

expand in a Taylor series about eξ = ξ .  Since ( )ef 0ξ = , and the third and higher 

derivatives of ( )f ξ  are all identically zero, the right hand side of Eq. (3) can be 

represented exactly by the first two non-zero terms of the Taylor series.  When the 

coefficients in this series are evaluated using Eq.(4) and the results are substituted into 

Eq.(3), we have 

 ( ) ( ) ( )( )( )1 22
o e e

d
2k c k / k k 1 k / k

dt

ξ ′ ′′ ′ ′ ′′ ′= − ξ − ξ + − ξ − ξ  (5) 

Because of the near irreversibility of the reaction in Eq. (2), we have k / k 1′′ ′ << ; if we 

ignore terms first order and higher in ( )1/ 2
k / k′′ ′ ,   Eq.(4) becomes e ocξ = , while Eq.(5) 

assumes the form 

 ( )2

o

d
k c

dt

ξ ′= − ξ  (6) 

 Eq.(6) is, of course, the appropriate rate law for a second order irreversible reaction.  

With the initial condition 0ξ =  at t = 0, the integral of Eq. (6) is 

 ( ) o
o

o

k c t
t c

1 k c t

 ′
ξ =  ′+ 

 (7) 

When at least one of the reactants or products is ionic, the progress of the reaction  

can be followed by measuring the conductance.  The instantaneous value of the 

conductance, L, is given by 

 ( )( )o e o
eL L L L /= + − ξ ξ  (8) 
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where oL is the initial value, and eL is the value at equilibrium [3].  After substitution of 

Eq.(7 ) into Eq.(8),  we obtain  

 ( )o o e o e
o

1 1 1

L L L L L L k c t
= +

− − ′−
 (9)   

Values of ( ) 1oL L
−

−  plotted versus 1t−  produced a straight line, the slope of which was 

used to determine the value of the rate constant, k′ .   

2.2  Thermodynamics 

Eq.(5), as written, provides no clues concerning the effects to be expected near a 

critical point.  To take into account the large deviations from solution ideality that are 

expected near a critical point, d / dtξ  needs to be expressed in terms of the Gibbs free 

energy difference, G∆ , that separates products from reactants.   Written in this form, the 

rate law is [6,7] 

 ( )1 2
*

a ad
1 exp G / RT

dt y

′κξ = − ∆    (10) 

where ia  (i = 1, 2) are the thermodynamic activities of the reacting species, ethylacetate 

and OH- , respectively, *y is the activity coefficient of the transition state, ′κ  is the rate 

coefficient for reaction in the forward reaction in the case of dilute ideal solution,  R is 

the gas law constant, and T is the absolute temperature.  The factor  

 *
1 2r a a / y′ ′= κ  (11) 

that multiplies the bracket in Eq.(10) is the rate of reaction in the forward direction.   

To make contact with Eq.(5), we begin by expanding the right hand side of 

Eq.(10) in powers of  G / RT∆ .  After retaining terms up to second order, we have 
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2

d G 1 G
r

dt RT 2 RT

 ξ ∆ ∆   ′= − +         
 (12) 

Because equilibrium is the reference point for analyzing the effects of the consolute point 

on chemical reactions, we next expand r ′ and G∆ as functions of ξ  in Taylor series about 

eξ = ξ .  To second order in ( )eξ − ξ  we have 

 ( ) ( ) ( ) ( )
2

2

e e e2
e e

r 1 r
r r

2

′ ′  ∂ ∂′ ′ξ = ξ + ξ − ξ + ξ − ξ  ∂ξ ∂ξ   
 (13) 

and 

 ( ) ( ) ( ) ( )
2

2

e e e2
e e

G 1 G
G G

2

  ∂∆ ∂ ∆∆ ξ = ∆ ξ + ξ − ξ + ξ − ξ  ∂ξ ∂ξ   
 (14) 

respectively, where the supscript, “e”, refers to chemical equilibrium.  Noting that 

( )eG 0∆ ξ = , we can substitute Eqs.(13) and (14) into Eq.(12) and collect terms up to 

order ( )2

eξ − ξ .  The result is 

 

( ) ( )

( )
( )

( ) ( )

e
e

e

2 2
2e e

e2 2
e e e e

rd G

dt RT

r rG 1 r G G

RT 2RT2 RT

′ ξ  ξ ∂∆= − ξ − ξ ∂ξ 
 ′ ′ξ ξ′       ∂∆ ∂ ∂∆ ∂ ∆− + + ξ − ξ       ∂ξ ∂ξ ∂ξ ∂ξ        

 (15) 

The first order term in ( )eξ − ξ  on the right hand side of Eq.(15) is adequate by itself to 

describe the net rate of any reaction close to equilibrium. In addition, it is an exact 

expression for the rate of a reversible reaction that is first order in both directions, and 

serves as an approximate expression for the net rate of an irreversible first order reaction 

[3].   By contrast, both the first and second powers of ( )eξ − ξ  in Eq. (15) are required 

to represent the net rate of a reaction that is second order in either direction.  Indeed, in 
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the case where the reaction kinetics are no more than second order in either direction, all 

terms higher than ( )2

eξ − ξ  can be ignored.  If the reaction is irreversible and second 

order in the forward direction, we have seen in Section 2.1 that the coefficient of the term 

in ( )eξ − ξ  is negligible, and only the term in ( )2

eξ − ξ  is important.  Because Eq.(15) 

refers the net rate of reaction to thermodynamic derivatives evaluated at the position of 

chemical equilibrium, the Griffiths-Wheeler rules [8] can be used to analyze the critical 

behavior of the coefficient of ( )2

eξ − ξ . 

III. EXPERIMENT 

In our previous experiments, we have encountered several phenomena that are 

characteristic of chemically reacting mixtures near a consolute point: 

 First, the dissolution of reactants and reaction products in a binary liquid mixture 

with a consolute point usually causes a noticeable shift in the critical temperature [2].  As 

a consequence, it becomes necessary to draw a distinction between the critical solution 

temperature, o
cT , of the original binary mixture and the equilibrium critical solution 

temperature, cT , of the multi-component reaction mixture in which the binary mixture 

plays the role of the solvent.    We have observed experimentally that 

 o
c cT T ac= +  (16) 

where “a” is an empirical coefficient, which has a different value for each mixture, and c 

is the initial molar concentration of the added reactant [9].   Although technically the 

value of cT  is determined by the value of eξ , Tc can be connected to the initial 

concentration of the reactants, c, as shown in Eq. (16), because all of the reactions 

mentioned above go essentially to completion.  By starting each saponification kinetics 
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run with fixed, identical concentrations of ethylacetate and sodium hydroxide, the value 

of Tc was a constant for our experiment.  

 Second, when the thermostat temperature, T, happens to lie between o
cT  and cT , a  

liquid-liquid phase transition will occur in the mixture during the course of the reaction 

[3,9].  The elapsed time, t, after the start of a run when the phase separation appears, is 

revealed by a change in the slope, d / dtξ , of the time dependence of the extent of reaction 

[3].  As equilibrium is the reference state for the theory of critical effects on the reaction 

rate [2-4], we have ignored in a kinetics run any data collected prior to the occurrence of 

the phase transition.  

Third, because of the dependence of critical solution temperature upon 

composition, we should expect during the course of a kinetics run that this temperature 

will have an instantaneous value that depends upon ξ (t).  With a fixed thermostat 

temperature, T,  this drift in the critical temperature might cause critical slowing down of 

the conductance, which is known to depend upon the difference between T and the 

critical temperature [10].  The response of the conductance probe to this temperature 

difference could be mistaken for its response to the concentrations of sodium acetate and 

sodium hydroxide.  In calibration experiments, however, we have made sure that our 

conductance probe continues to respond linearly to concentration despite the drift in Tc 

with time [4,9].  Indeed, as a part of this calibration procedure, a reaction mixture that 

had reached chemical equilibrium was warmed (or cooled) through the suspected critical 

region.  We observed the residual conductance, eL , to pass through a sharp minimum as a 

function of T.  Opalescence could be observed in the liquid at this conductance minimum, 

which demonstrated that the corresponding temperature equaled Tc [4,9] . We used the 
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location of this conductance minimum as the operational definition of the equilibrium 

critical temperature for all our mixtures.   

Organic materials were purchased from Aldrich and used as received.  Water was 

once distilled from a glass system. The solvent was prepared at the critical composition 

of 24.78 weight percent 2-butoxyethanol in water [11] ; this mixture had an LCST at Tc
o 

= 50.11 oC.   To 100 mL of this binary mixture, enough ethylacetate and sodium 

hydroxide were added to make the concentration of each reactant equal to 0.001 M.  

Once this mixture had reached chemical equilibrium, the critical temperature was  

cT 48.4 C= � .  The corresponding value for “a” in Eq.(16) was –1794 oC mol-1 L.  

 The thermostat bath, temperature controller, temperature measuring equipment, 

and reaction cell were as previously described [1-3]. The reaction mixture was well 

stirred with a magnetically driven stirring bar.  The conductance was measured with a 

Hanna Instruments, Inc. model HI 9032 conductivity meter. The software of the Hanna 

meter recorded the difference, oL L− ;hence, Eq.(9) was fitted to the data from each run 

with e oL L−  and k′  taken as adjustable parameters.  From the slope and intercept, the 

value of k′  could be computed.      

In Figure 1, we show an Arrhenius plot of the temperature dependence of the rate 

constant k′ .  The units of k′  are L 1 1mol min− − . The straight line, which was fitted to the 

data collected at temperatures outside the critical region had the equation, 

 ln k 18.9 48,900 / RT′ = −  (17) 

where R = 8.314 J 1 1K mol− − .  This line serves to establish the “background” for 

determining the existence of a critical effect.  In the region just below the critical 

temperature, slowing down of the reaction rate is apparent.  Because of the limitations of 
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our platinum resistance thermometer, we could not accurately determine temperatures 

much above 50 oC, so except for six points, all of the data were collected in the one-phase 

region below Tc. 

3. DISCUSSION AND CONCLUSIONS 

Griffiths and Wheeler [8] separate the thermodynamic variables into two classes.  

In the first class are the “fields,” such as temperature, pressure, the component chemical 

potentials, and G∆ .  The value of a given field variable is the same in all phases 

coexisting in equilibrium.  In the second class are the “densities,” such as entropy, the 

concentrations of the chemical components, and ξ , which have different values in each 

coexisting phase.  Griffiths and Wheeler argue that when the experimental conditions are 

such that the fixed variables consist of fields and two or more densities, then the 

derivative of a field with respect to a density, such as ( )e
G /∂∆ ∂ξ , will not have any 

special behavior as the temperature, T, approaches cT .  If fewer than two densities are 

held fixed, however, the derivative of a field with respect to a density will go to zero.  In 

the case where one density is fixed, the derivative is said to go to zero “weakly”, while 

when no densities are fixed, the derivative is said to go to zero “strongly” [8].   For 

practical purposes, a “weak” approach to zero means that the derivative is proportional to 

x

cT T− , where x is a critical exponent having magnitude of the order of 0.1.   By 

contrast, a “strong” approach to zero means that the exponent, x, has a magnitude of the 

order of unity.  In both cases, the exact value of the exponent depends upon the whether 

the critical point is approached along the critical isotherm or the critical isobar [12].      

  In applying the Griffiths-Wheeler rules to the saponification of ethylacetate in 2-

butoxyethanol + water, we need first to enumerate the number of fixed densities.  In a 
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homogeneous reacting mixture, a fixed density is a concentration of a component that is 

inert in the sense of not participating in any chemical equilibrium.  Neither the reactants, 

ethylacetate and sodium hydroxide, nor the products, acetic acid and ethanol, can be 

considered to be inert, because they are involved in the main reaction.  Since the 

concentration of the 2-butoxyethanol is much greater than that of the sodium hydroxide, 

this solvent alcohol can be expected to partly displace ethanol from ethylacetate to form 

2-butoxyacetate in a side reaction called transesterification [13].  Although ethylacetate 

does not hydrolyze effectively in pure water [5], the water in our mixture is, nevertheless, 

not completely inert.  With the sodium hydroxide essentially entirely consumed at 

equilibrium, the acetic acid will participate with the water in a Bronsted-Lowry acid-base 

reaction to form the hydronium ion and acetate ion.  With all components apparently 

involved in at least one reaction, the Griffiths-Wheeler rules predict that ( )e
G /∂∆ ∂ξ  

should go to zero “strongly” as T approaches Tc .   We thus conclude that the terms in 

Eq.(15) that involve ( )e
G /∂∆ ∂ξ  must vanish at the critical point.    

  The net rate of reaction is then determined by the product, 

( )( )( )2 2
e e

r / 2RT G /′ ξ ∂ ∆ ∂ξ , which is all that remains of the coefficient multiplying 

( )2

eξ − ξ  in Eq.(15).  The Griffiths-Wheeler rules were derived by applying the Principle 

of Universality [14,15], that governs all critical phenomena, to the thermodynamic 

analogies that exist between pure fluids and mixtures.  In a pure fluid, the pressure, P, is a 

field, while the molar volume, V, is a density; the second derivative,( )2 2P / V∂ ∂ , is zero 

at the critical point.   In a mixture, G∆ is a field, while ξ  is a density, and in analogy with 

the pure fluid, ( )2 2

e
G /∂ ∆ ∂ξ  can perhaps be expected to go to zero at the critical point.  
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Indeed, according to Eq.(15), the experimental result summarized in Figure 1 can be 

understood if both the first and second derivatives of G∆ are small near the critical point.  

By contrast, the behavior of ( )er′ ξ  and its derivatives does not seem to be known as T 

approaches Tc .  

  None of the six points in Figure 1 collected at temperatures above Tc appear to 

lie above the straight line, as would be the case if speeding up of the net reaction rate 

occurred in this region.  We cannot completely rule out speeding up, however, until we 

are able to repeat this experiment at concentrations of ethylacetate and sodium hydroxide 

that are large enough to reduce Tc to a value closer to the center of the range of our 

thermostat.  This strategy is not without its hazards, however, because as the gap between 

Tc
o and Tc widens, a larger fraction of the kinetic runs will be interrupted by a liquid-

liquid phase transition, since the thermostat temperature, T, will necessarily lie between 

Tc
o and Tc . 

In answer to the question posed in the Introduction, we can conclude on the basis 

of Figure 1 that reaction rate critical effects are not confined to the SN1 mechanism.  In 

analyzing reaction kinetics using Eq. (15), however, we should distinguish between 

“dynamic” critical effects that depend upon  ( )er′ ξ  and its derivatives, and “static” 

critical effects that depend upon the thermodynamic derivatives, ( )e
G /∂∆ ∂ξ  and higher. 

As pointed out, little is known about dynamic effects.  So far as static critical effects in 

reactions with first order kinetics, such as SN1, are concerned,  the net rate depends upon 

the derivative ( )e
G /∂∆ ∂ξ , because all derivatives ( )2 2

e
G /∂ ∆ ∂ξ  and higher are 

negligible. In the case of reactions with second order kinetics, such as the saponification 
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of ethylacetate, the static effects depend upon both ( )e
G /∂∆ ∂ξ and ( )2 2

e
G /∂ ∆ ∂ξ , 

because ( )3 3

e
G /∂ ∆ ∂ξ  and higher are all negligible. 
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Caption 

Fig. 1  Arrhenius plot of the second order rate coefficient, k′ , for saponification of 
ethylacetate in 24.78 wt. % 2-butoxyethanol in water.  The reciprocal of the absolute 
temperature is 1/T, while the reciprocal of the equilibrium temperature is labeled cT .  

This temperature corresponds to 48.4 o C . 
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